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Dielectrophoresis(DEP) is the movement of polarizable species in a nonuniform electric field. DEP is used
to attract(positive DEP) to or repel from(negative DEP) regions of high field intensity and is useful for
manipulating species, including biological species. Current theoretical and numerical approaches used to pre-
dict the response to DEP forces assume that the target species is a point particle; however, in practice, the target
species is of finite size, e.g., macromolecules, spores and assay beads. To elucidate the importance of target
species size effects, higher order terms in the DEP force multipole expansion must be considered[P.R.C.
Gascoyne and J. Vykoukal, Electrophoresis23, 1973 (2002)]. In this paper, we used the method of Green’s
function to derive and explore the importance of the quadrupolar contribution to the DEP forces acting on
finite-sized species produced by a planar, interdigitated array of electrodes. Based on the analysis, it was found,
for example, that at a fixed height of 20µm in an interdigitated DEP array with an electrode width and spacing
of 20 µm energized by a 10 Vp p, 1.0 MHz ac signal, the quadrupolar contribution to the total DEP force was
5% for a latex bead with 4.2µm in radius and 10% for the one with 6µm in radius. For a fixed, fractional
quadrupolar contribution,b, both the exact calculation and the scaling estimate elucidate that the critical size
of particle increase linearly with the electrode width(and spacing) at a fixed height, while the critical particle
radius increases with a square-root dependence on the width height above the electrode in the electrode array.
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I. INTRODUCTION

Dielectrophoresis(DEP), termed by Pohl[1], is the move-
ment of polarizable species in a nonuniform electric field to
regions of high or low electric field, depending on the par-
ticle polarizability compared to the suspending medium(see
also [2]). DEP has been used to effectively manipulate a
wide range of biological species such as healthy and cancer-
ous cells, DNA from lysate, bacteria and viruses, for differ-
ent purposes, for examples, separation[3–5], detection[6],
characterization[7], position and orientation[8,9]. Current
theoretical and numerical methods that are widely used to
predict the DEP forces use the dipole representation of the
DEP force, which assumes that the target species are point
particles. However, in practice, the target species are of finite
sizes, e.g., macromolecules, spores and assay beads.

The typical time-average expression for conventional di-
electrophoretic force based on dipole approximation as given
by [10,11]

FIDEP= 2p«ma3Reffcmg¹IuEIrms·EIrmsu, s1d

whereErms is the root mean square(rms) magnitude of the
electric field,a is the radius of the particle, and«m is the real
part of the complex permittivity of the suspending medium.
The Clausius-Mossotti factor,fcm=s«p

* −«m
* d / s«p

* +2«m
* d, is

the polarizability of the target species relative to the suspend-
ing fluid medium.«p

* and «m
* are the frequency dependent

complex permittivities of the species and the suspending me-
dium, respectively. The ability to manipulate suspending
fluid properties and the frequency dependency enables the
practitioner of DEP to preferentially separate desired species
in different frequency ranges.

When performing analysis of DEP phenomena, it is, in
general, highly desirable to have analytic expressions for the
resultant fields produced by the electrode configuration;
however, in practice, it is recognized that many electrode
configurations are complicated, for example, a spiral elec-
trode array[12] and do not lend themselves to closed form
solutions. As a consequence, they often require numerical
methods of investigation. To enable analytic expressions and
order of magnitude estimates, we perform our analysis on a
planar array of interdigitated electrodes, which is an ame-
nable electrode configuration that permits closed form ana-
lytic expressions[13,14].

Morganet al. [13] used Fourier analysis to obtain analyti-
cal expressions for the dipolar contribution to the DEP forces
produced by an interdigitated electrode array that is valid
when the levitation is greater than or equal to the electrode
width. Alternatively, Wanget al. [11] derived a 3D Green’s
function that is dependent on the surface potential using the
method Green’s second identity to relate the desired potential
field produced by a surface potential to a known, appropri-
ately chosen auxiliary function, see[11] for details. Later,
Clague and Wheeler[14] used the 2D upper-half-plane
Green’s function, which was functionally different from
Wang’s resultant Green’s function; however, both approaches
yielded the identical results for the potential field produced
by a 2D array of parallel electrodes. These methods produce*Corresponding author. Email address: clague1@llnl.gov
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useful results and are computationally more efficient than
standard numerical methods[11]. In all three of these efforts,
however, they restricted their analysis to the dipole approxi-
mation of the DEP force.

Analytic approaches for predicting the dependence of
DEP forces on species size and higher order field effects
considering the size and high order field effects have been
proposed in the literature[15–18]; however, all these meth-
ods assume that the electric field and its derivatives are
known and therefore, analytical solutions to the electric field
are necessary to explore the importance of higher order ef-
fects.

In this paper, we use the method of Green’s functions and
derive an analytical solution to the electric field produced by
an interdigitated DEP electrode array. By combining the re-
sultant expression for the electric field with the general DEP
force formulation by Jones[17], we derive the desired ex-
pressions for the quadrupolar contribution and perform a
study to elucidate the importance of the quadrupole contri-
bution to the DEP force as a function of system parameters,
e.g., length scales.

The remainder of the paper is divided into the following
sections: in Sec. II we review the theory and derive the nec-
essary expressions for the dipole and quadrupole contribu-
tions to the DEP force; in Sec. III we perform studies to
show the contribution of the quadrupole to the DEP force
relative to the dipole representation. In Sec. III A, we give a
comparison of the field and its derivatives; in Sec. III B, a
validation of the theory is given by comparing to the previ-
ous reports; in Secs. III C and III D, we explore quadrupolar
contribution as a function of target-species size and height
above plane of the electrode array plane; in Sec. III E, we
combine the size and height effect and develop a scaling
estimate to permit a rapid prediction of the conditions when
the quadrupolar contribution becomes significant.

II. THEORY

In this work, we start with and extend the result of Clague
and Wheeler[14]. They use the upper-half-plane Green’s
function and a linear approximation for the surface potential
in the gaps[11] between electrodes to predict the gradient in
the electric field strength for the approximation of the con-
ventional DEP force(standing wave) produced by a array of
parallel electrodes, i.e., interdigitated electrode configuration
shown in Fig 1.

The electrode width isw and the gap or spacing between
the electrodes isd. The leading and trailing edges of thej th

electrode are given byaj and bj, respectively.l j represents
the midpoint between thej th pair of electrodes.cg andce are
the potentials of the electrodes and gaps, respectively.

Using the approach of Wanget al. [11] and Clagueet al.
[14], the electric potential above the electrode array given in
Fig. 1 is given by

csx,zd = −
1

p
o
j=1

N

ceSarctanFx − bj

z
G − arctanFx − aj

z
GD

−
1

p
o
j=1

N−1

cgsxdSarctanFx − aj+1

z
G − arctanFx − bj

z
GD

+
1

p
o
j=1

N−1
C2

2
z ln

z2 + sx − aj+1d2

z2 + sx − bjd2
. s2d

Herez is the height of the particle above the surface of the
electrode array, andx lateral position along the array;C2 is
the coefficient in the gap potentials. The electric field is de-
termined by taking the negative gradient of the potential, Eq.
(2), or

EIsx,zd = − ¹Icsx,zd. s3d

By taking the gradient of Eq.(3), one can construct the
desired expressions to approximate the dipolar contribution
to the DEP force, Eq.(1). We, however, are interested in
extending this result to include the quadrupolar contribution
to the force.

The general expression, as given by Jones[17], for the
time-averaged DEP force including both dipolar and quadru-
polar contributions has the following form:

FDEP= 2p«mHKs1da3¹IsEI ·EId +
Ks2da5

3
¹Is¹IEI:¹IEId

+ shigher-order termsdJ . s4d

Here Ksnd=s«p
* −«m

* d / fn«p
* +sn+1d«m

* g is the generalized spe-
cies polarizability, which permits the inclusion of higher or-
der moments,n, being related to the order of the contribution
from the multipole expasion.«p

* and «m
* are again the fre-

quency dependent complex permittivities of the particle and
suspending medium, respectively. The first term on the right
of Eq. (4) is the dipole contribution, which is shown in Eq.
(1) and the second term on the right-hand side is the quadru-
polar contribution to the DEP force.

To assess the importance of the quadrupolar contribution
to the DEP force, we simply determine what percent,b, of
the total force the quadrupole represents:

b ø
uFQu

uFTu
3 100%

=
ua2¹Is¹IEI:¹IEIdu

U3
Ks1d

Ks2d¹IsEI ·EId + a2¹Is¹IEI:¹IEIdU 3 100% . s5d

Here FQ is the quadrupolar contribution only andFT is the

FIG. 1. Interdigitated DEP electrode array. Four electrodes are
shown to illustrate electrode positioning and important geometric
parameters.
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total DEP force(e.g., the dipolar plus quadrupolar contribu-
tions to the DEP force). If we chose a tolerance,b, for when
it is advisable to include the quadrupolar term, say, whenb
,5%, then we can better understand the important param-
eters that govern DEP particle manipulation, e.g., the critical
particle size and height above the electrode array. While the
excitation voltage, applied field frequency and Clausius-
Mossotti factor play an important role to the force ratio de-
scribed in Eq.(5), we are primarily concerned with the elec-
tric field intensity and the associated gradients. The
quadrupolar contribution has the following form:

FIQ = 2p«m
Ks2da5

3
¹Is¹IEI:¹IEId. s6d

When using index notation, Eq.(6) can be expanded as

¹Is¹IEI:¹IEId = SkdIkHSiS jS ]Ej

]xi

]2Ei

]xk]xj
+

]Ei

]xj

]2Ej

]xk]xi
DJ

3si = 1,2,3; j = 1,2,3; k = 1,2,3d, s7d

where E1,E2,E3 are components of the electric field. The
indices 1, 2, 3 are equivalent tox,y,z in the Cartesian co-
ordinates anddIk is the unit vector ink direction (k=1,2,3).
However, in thex2 or y direction, that is along the electrode,
ignoring end effects, the electric field is considered con-
stant and therefore all thex2 components are zero. To
quantify the quadrupolar contribution, all the components
{]Ej /]xi, ]2Ei /]xk]xj} must be found explicitly. However,
the following quantities are equivalent:

]Ex

]z
=

]Ez

]x
,

]2Ex

]x]z
=

]2Ez

]x2 ,
]2Ez

]x]z
=

]2Ex

] z2 . s8d

Therefore, if one derives expressions forEx, Ez, ]Ex/]x,
]Ex/]z, ]Ez/]z, ]2Ex/]x2, ]2Ex/]x]z, ]2Ez/]x]z, and
]2Ez/]z2, the field related contributions to dipole and quad-
rupole DEP forces are fully specified. The equivalence of the
terms given in Eq.(8), which complete the list of necessary
expressions to predict the quadrupolar force contributions,
was confirmed and validated via using symbolic mathematics
packages, e.g., Mathematica®(Wolfram Research). The
electric fields and first partials of the electric fields shown
above have been derived previously[14], and the remaining
second partials are given in the Appendix.

III. RESULTS AND DISCUSSIONS

The particles subject to DEP forces produced by an inter-
digitated electrode array can be either attracted(positive
DEP) to or repelled from(negative DEP) regions of high
field strength, i.e., at the electrode edges for the configuration
under consideration. Positive or negative DEP is determined
by the sign of the relative difference between the complex
permeabilities of the target species and the suspending me-
dium. The force is also a function of the particle size, elec-
trode width, spacing between electrodes and height above the
electrode array.

In the subsections to follow, we present and compare the
electric field intensities(and gradients in the electric field

intensities) for the dipole and quadrupole contributions to the
DEP force, identify a critical particle size that gives rise to a
specificb and quantify particle height effects relative to the
electrode array and explore the coupled particle size and
height effects. For all of the studies, we consider an electrode
array with equal width,w, and spacing,d, fixed at 20µm and
the magnitude of the applied voltage signal is 10 Vp-p with
180° phase shifts between adjacent electrodes operating at a
frequency of 1.0 MHz unless another signal is specified.

A. Electric field and gradients in the electric
field intensities

The DEP force is generated by the gradient in electric
field intensity,sEI ·EId, for the dipolar term and the gradient of
the scalar product of the gradient field intensity,s¹IEI :¹IEId,
for the quadrupolar term. To get better understand the impor-
tance of the quadrupolar contribution, we comparesEI ·EId,
s¹IEI :¹IEId and their associated derivatives inx and z direc-
tions at two different heights of 2µm and 5µm above the
electrode array as a function of position along the electrode
array; see Figs. 2(a)–2(f).

The shapes of the contributions are indeed similar to each
other when plot as a function ofx position at fixed heights.

FIG. 2. The contributions to the DEP force fromsEI ·EId,
s¹IEI :¹IEId and their associated gradients in components form as a
function of horizontal position along the electrode array at fixed
vertical positions of 2µm (solid curves) and 5µm (dash curves).
The interdigitated electrode array consists of 20µm wide electrodes
with spacing equal to the width and is energized by a 10 Vp-p, 1.0
MHz AC signal. The short, black, thicker horizontal lines represent
the electrodes.
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However, the contribution froms¹IEI :¹IEId is approximately
10 orders of magnitude greater than the contribution from the
electric field intensitysEI ·EId. The x andz component of the
gradient of the quantities are shown in Figs. 2(c)–2(f), re-
spectively and as expected, the maxima happen at the elec-
trode edges. However, contributions resulting from the com-
ponents of ¹Is¹IEI :¹IEId are approximately 11 orders of
magnitude greater than those from¹IsEI ·EId at the same posi-
tion. As expected, the magnitude of the gradients increase
exponentially as the particle approaches the electrode plane.
Because, the quadrupolar contribution to the overall DEP
force is proportional to the square of the particle radius rela-
tive to the dipolar contribution, see Eq.(4) and Eq.(5), the
quadrupolar contribution becomes increasingly important as
the radius increases and as the particle approaches the elec-
trode surface.

Figure 3 combines a vector plot and a contour plot to
show the predicted DEP force field, including the quadrupole
contribution, produced by an interdigitated electrode array in
which the electrode width is equal to the spacing.

Qualitatively, the quadrupolar contribution does not alter
the general features of the DEP force field[11,14], meaning
that the strongest forces still happen at the edges of the elec-
trodes and the components in horizontalx direction are com-
parable to the ones in verticalz direction; while thez com-
ponents inz direction become dominant as the level goes
higher.

B. Validation of theory: Comparison to previous reports

Morganet al. derived an analytical solution for levitation
heights produced by an interdigitated electrode array using
Fourier series analysis[13] and Markxet al. carried out ex-
periments to determine the levitation heights of different size
latex beads produced by interdigitated electrode arrays with
various electrode widths(spacings) [19]. The theoretical re-
sults of Moranet al. [13] agreed well with Markxet al. [19].

To validate our analytic expressions, we compare our re-
sults with the theoretical results of Morganet al. [13] and the
experimental results of Markxet al. [19] by predicting the
DEP force and levitation heights using the same system pa-
rameters, i.e., for a 6µm latex bead that has a conductivity of
0.65310−7 S/m and a relatively dielectric constant of 5.5
and that is suspended in a suspending medium that has a
conductivity of 1.1 mS/m and a relatively dielectric constant
of 79. Given these parameters at a frequency of 1.0 MHz,
the real parts ofKs1d and Ks2d are −0.478 and −0.317, re-
spectively, meaning that a levitation force(negative DEP)
will balance sedimentation or gravitational force and the par-
ticles will achieve an equilibrium levitation height. In Table
I, we compare our results with those of Morganet al. and
Markx et al.

In each comparison the radius of the latex particle was
taken as 3µm, and the electrode width/spacing, 20µm. h0
represents the levitation heights from our prediction. The two
entries forh0 represent the levitation height predicted using
the dipole and the dipole plus the quadrupole contributions.
Thereh1 andh2 are theoretical and experimental results from
previous papers[13,19], respectively. As shown in Table I,
the agreement is excellent validating the accuracy of our ana-
lytic expressions. As is seen, when the levitation heights are

FIG. 3. DEP force field, including the quadrupole contribution
to the force prediction, produced by an interdigitated DEP array
energized by an ac signal. The electrode width and the spacing
between two adjacent electrodes are equal and represented byw; the
short, black line represents one of the electrodes. The gray scale is
from maximum force(white) close to the electrode edges to the
minimum (black) and the arrows designate the force directions.

TABLE I. Levitation height comparisons with previously published results.(All the heights in Table I are in microns.)

Electrode width
and spacing(µm)

V0=2 Vp-p V0=6 Vp-p V0=8 Vp-p

h0stheoryd h1stheoryd h2sexpd h0stheoryd h1stheoryd h2sexpd h0stheoryd h1stheoryd h2sexpd
(this work) [13] [19] (this work) [13] [19] (this work) [13] [19]

40 74.8 70 72 85.4 80 82 92.3 88 92

74.9 85.7 92.3

20 49.9 48 50 55.1 55 55 58.8 62 59

51.1 55.3 59.0

10 32.0 35 32 34.6 40 34

32.2 35.0
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greater than the electrode width and spacing, the quadrupole
contribution is negligible. In the subsections to follow, the
significance of the quadrupolar contribution is determined by
the combination of the levitation height, for when the height
is less than or equal to the electrode width, and particle size.

C. Target species size effects

As shown in Eq.(4), the particle size effect is an impor-
tant factor when considering the quadrupolar contribution.
Figure 4 shows the % contribution of the quadrupole as a
function of the particle radius at a fixed height of 20µm
above an interdigitated DEP array with an electrode width
and spacing of 20µm energized by a 10 Vp-p, 1.0 MHz ac
signal using the physical properties for latex beads.

As shown in Fig. 4, the fractional quadrupolar contribu-
tion exhibits a quadratic dependence on the radius of the
bead, which is predicted in Eq.(5).

For this particular electrode configuration, the quadrupo-
lar contribution is 2.5% for a radius of 3.0µm of the total
force, 5% for a radius of 4.2µm and 10% for a radius of 6.0
µm. However, for the 6µm latex beads(3 µm in radius) used
in the validation session, the variation should be much less
than 2.5% since the levitation height is much higher than 20
µm and this explains why we did not see the quadrupolar
contribution in Table I.

D. Height effects

To explore the relative importance of the dipolar and qua-
drupolar contributions to the DEP force, we compare the
magnitudes of the force contributions, i.e.,

Fi = ÎFxi
2 + Fzi

2 with 5i = D: dipole contribution,

i = Q: quadruple contribution,

i = T: total contribution.
6
s9d

As suggested in the electric field nonuniformity plots in
Fig. 2, the quadrupolar contribution becomes more and more

important when the particles get closer to the electrode sur-
face. In Fig. 5, we plot the DEP forces contributed by dipolar
and dipolar plus quadrupolar terms varying with levitation
heights for 6µm latex beads at the electrode edges, where the
force is strongest.

The test heights above the array ranged from 3µm to 15
µm for the same interdigitated electrode configuration array.

The two curves approach to each other and finally overlap
as the height increases. Additionally, both forces decrease
exponentially with the levitation height. In this specific case,
the quadrupolar contribution to the force drop to less than
10% at the height of 4.5µm and less than 5% at 7.5µm.

To explore the DEP force field beyond electrode edges,
Fig. 6 we contrast the magnitude of the DEP forces predicted
by the dipolar plus quadrupolar terms versus the dipolar term
alone as a function of position along the electrode array at
fixed, test heights of 6µm and 15µm, respectively.

The forces experienced by the test particle closer to the
electrode surface have spikes at the electrode edges and a
wide range of magnitude from 200 pN to 700 pN, while the
forces experienced by the test particle far from the electrode
surface are spatially more uniform varying in a smaller range
from 95 pN to 130 pN.

FIG. 4. Plot of the quadrupolar contribution to the total DEP
force as a function of the latex bead radius. The bead is fixed at the
height of 20µm. The electrode width and spacing are 20µm, re-
spectively, and the array is energized by a 10 Vp-p, 1.0 MHz ac
signal.

FIG. 5. DEP forces acting on a 6µm latex bead predicted using
the combined dipole plus quadrupole termssFTd is compared to the
force predicted using only the dipole term onlysFDd compared as a
function of levitation heights above an interdigitated DEP array.
The electrode width and spacing are both 20µm and the array is
energized by a 10 Vp-p, 1.0 MHz ac signal. The force estimates
were assessed at an electrode edge, where the force is at a
maximum.

FIG. 6. Comparison of the magnitude of the DEP force acting
on a 6µm latex bead as predicted by the dipole plus quadruple and
dipole alone as a function of horizontal position along the electrode
array at fixed heights of 6µm and 15µm.
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E. Combining electrode width, target species height,
and size effects

The above discussion is based on an interdigitated DEP
electrode array with a width and spacing of 20µm energized
by a 10 Vp-p, 1.0 MHz ac signal. In order to give intuition for
variations in system parameters, e.g., electrode width, target
species height and size effects, we solve the full set of equa-
tions and develop scaling estimates to predict the critical
particle size for when quadrupolar contribution reaches a
specified tolerance,b, see Eq.(5). In Figs. 7(a) and 7(b), the
tolerance,b, is set to 10% and the critical particle radius is
determined as a function of electrode width for fixed species
heights above the electrode array.

Shown above in Fig. 7(a) is the critical particle size as a
function of electrode width for fixed heights and a percent-
age of quadrupolar contribution ofb of 10%. The discrete
data points are from the critical species radii predicted from
the full set of equations, and the lines are qualitative predic-
tions from the scaling estimate. As shown above, the critical
particle size increases linearly with an increase of electrode
width at every height sampled. Also note that when the par-
ticle height is closer to the electrode array,z=0.1 w, that the
critical particle radii range from submicron to,3 mm. In
contrast, as the particle moves vertically away from the elec-
trode array, the critical particle size can be increased, in some
cases substantially, to fall within the specified tolerance,
b, 10% quadrupolar contribution to the overall DEP force.
Additionally, as the electrode width increases and the vertical
position increases, the critical particle size increases mono-
tonically.

To elucidate this monotonic increase in critical particle
size with increase in electrode width, in Fig. 7(b) we show
the same data in a different perspective. The data show more
dramatically that the dependence of critical particle size as a
function of height for various electrode widths. As shown the
crucial particle size exhibits a nonlinear dependence on
height above the electrode array for a fixed electrode width.

This is clearly understood by doing the scaling estimate
for the quadrupolar contribution using Eq.(5) and rewrite it

based on a characteristic length scale,l, over which the elec-
tric field and electric field intensity changes:

b , O>1 Ua5V2

l5
U

3UKs1d

Ks2da
3V2

l3
+ a5V2

l5
U2 = O>1 Ua2 1

l2
U

3UKs1d

Ks2d + a2 1

l2
U2 ,

s10d

V is the applied signal and if we letK=Ks1d /Ks2d, then we
can rearrange to solve for the critical particle radius,ac,

ac , O> SÎ 3Kb

s1 − bd
l2D . s11d

For convenience, we keep the characteristic length scale,
l, under the radical. Ifh@w, then l ,h, and if w@h then l
,w; however, whenw,h, from the expressions given in the
Appendix and as shown in the Appendix of Clague and
Wheeler[14], we know that the characteristic length scales
of the system involve bothw andh. Therefore, if we writeh
in terms ofw, h=aw, where 0,aø1, then l2 can be ex-
pressed asaw2 and Eq.(11) simplifies to

ac , O> SwÎ 3Kb

s1 − bd
aD . s12d

Here,a is the fractional prefactor onw for describing the
particle height. To actually provide a useful correlation for
quick estimates, we multiply the scaling estimate given in
Eq. (12) by a constant,g,

ac = gSwÎ 3Kb

s1 − bd
aD . s13d

We fit the data with Eq.(13) to determineg. For a con-
stant height, Fig. 7(a), a is constant andac is expected to
exhibit a linear dependence onw; however, ifw is fixed and
h is varied, it is expected, according to Eq.(13), thatac will
exhibit square-root dependence onh or on a is illustrated in
Fig. 7(b).

For the specific case above,b=10% andK=1.5, a best-fit
value forg was found to be 0.5 and using thisg in Eq. (13)
the scaling estimate was plotted with the more rigorous esti-
mates as solid lines in both Figs. 7(a) and 7(b). As seen in the
figure, the agreement is very good and therefore, the result-
ing scaling estimate provides a rapid way to determine under
what circumstances DEP force estimates need to include the
quadrupolar contribution. Additionally, if one chooses to ne-
glect the quadrupolar contribution, Eq.(13) can be rearrange
to give a quick and reasonable estimate of the expected error
in DEP force predictions.

IV. CONCLUSION

In this paper we explore the importance of the quadrupo-
lar contribution to the DEP force acting on finite sized spe-
cies. To accomplish this, we used the method of Green’s
functions to develop an analytic expression for the DEP force
on a spherical particle in a field produced by a planar array of

FIG. 7. The critical species radius, that is the radius that causes
the quadrupolar contribution to be 10% of the total, predicted DEP
force, as a function of electrode width(with spacing equal to the
width) and target species height above the electrode array. In all
numerical experiments, the electrode array was energized by
10 Vp-p, 1.0 MHz ac signals. For all test cases, the spacing is equal
to the electrode width. The discrete data points represent the calcu-
lations based on the complete theory presented in this communica-
tion; see Eqs.(4) and (6)–(8), and the solid lines represent predic-
tions based on the scaling estimate given in Eq.(13), for g=0.5.
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interdigitated electrodes that includes the quadrupolar contri-
bution. It was shown that the quadrupolar contribution was
indeed very important, i.e., the gradients in the field terms
was,11 orders of magnitude gradient in electric field inten-
sity; therefore, given a particle of sufficient radius or prox-
imity to the electrode array, the noninclusion of the quadru-
polar contribution could result in an unacceptable amount of
error in predictions of DEP forces. The rigorous analytic so-
lution developed in this communication yields excellent
agreement with previous reports as the particles are levitated
far from the electrode surface[11,19]. Analytic solutions to
all of the fields and associated gradients are provided in[14]
and in the Appendix. A scaling estimate was derived to fa-
cilitate rapid prediction of critical particle size for when the
quadrupolar contribution needs to be included, or in contrast
this scaling estimate can be used to ascribe an error estimate
to the DEP force calculation when using the dipole approxi-
mation. The scaling estimate reveals a linear dependence of
the critical particle size at fixed height on electrode width.
Also as the height is increased at fixed electrode width, the
scaling estimate reveals a square-root dependence on height.

ACKNOWLEDGMENTS

This project was funded in part by DARPA/BioFLIPS
Contract No. N66001-01-C-8001. This work was performed,
in part, under the auspices of the U.S. Department of Energy
by University of California, Lawrence Livermore National
Laboratory under Contract No. W-7405-Eng-48.

APPENDIX

Equations for the second-order derivatives of the electric
field:
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